On Set Containment Characterization and Constraint Qualification for Quasiconvex Programming
نویسندگان
چکیده
Dual characterizations of the containment of a convex set with quasiconvex inequality constraints are investigated. A new Lagrange-type duality and a new closed cone constraint qualification are described, and it is shown that this constraint qualification is the weakest constraint qualification for the duality.
منابع مشابه
Some constraint qualifications for quasiconvex vector-valued systems
In this paper, we consider minimization problems with a quasiconvex vector-valued inequality constraint. We propose two constraint qualifications, the closed cone constraint qualification for vector-valued quasiconvex programming (the VQ-CCCQ) and the basic constraint qualification for vector-valued quasiconvex programming (the VQ-BCQ). Based on previous results by Benoist, Borwein, and Popovic...
متن کاملQuasiconvex Duality Theorems with Quasiconjugates and Generator
This paper is based on the author’s thesis, “On duality theorems for quasiconvex programming”. In this paper, we investigate duality theorems for quasiconvex programming as generalizations of results in convex programming, and consists of three topics. The first topic is about quasiconjugates and polar sets. The second is about three types of set containment characterizations. The third is abou...
متن کاملCharacterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملBoundedness of KKT Multipliers in fractional programming problem using convexificators
‎In this paper, using the idea of convexificators, we study boundedness and nonemptiness of Lagrange multipliers satisfying the first order necessary conditions. We consider a class of nons- mooth fractional programming problems with equality, inequality constraints and an arbitrary set constraint. Within this context, define generalized Mangasarian-Fromovitz constraint qualification and sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 149 شماره
صفحات -
تاریخ انتشار 2011